Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Build Environ ; 229: 109920, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2158541

ABSTRACT

Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 µm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.

2.
Indoor Air ; 32(2): e12987, 2022 02.
Article in English | MEDLINE | ID: covidwho-1714191

ABSTRACT

To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.


Subject(s)
Air Pollution, Indoor , COVID-19 , Masks , Physical Distancing , Ventilation , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2
3.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: covidwho-1580426

ABSTRACT

There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.


Subject(s)
Air Pollution, Indoor/prevention & control , Inhalation Exposure/prevention & control , Masks , Physical Distancing , Respiratory Aerosols and Droplets/virology , Ventilation , Air Conditioning , COVID-19/prevention & control , Humans , SARS-CoV-2/isolation & purification
4.
J Occup Environ Hyg ; 18(8): 409-422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1331517

ABSTRACT

Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m × 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-min mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.


Subject(s)
Cough , Exhalation , Aerosols , Cough/prevention & control , Humans , Masks , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL